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Abstract

This numertcal study of the stability of laminar flames specifically
addresses the dependence of stabiity on finite-rate chemastry with
low activation energy and wvariable thermodynamic and transport
properties. The caleulations show that activation energy and details
of chemistry play a minor role in altering the linear neutral stability
results from asymptotic analysis. Variable specific heat makes a
marginal change to the stability, variable transport properties, on the
other hand, tend to substantially enhance the stability from a critical
wave number of about 0.50 to 0.20. Also, the effects of varwable
properties tend Lo nullify the effects of nonunity Lewis number. When
the Lewis number of a single species is different from unity, as is true
in a hydrogen-air premized flame, the stability results remain close
to that of unity Lewis number.

Introduction

The linear stability of premixed flames has been studied by a large number of workers.
Starting with Landau (1944) and Darrieus (1945), a number of workers, including Margolis,
Matkowsky, Sivashinsky, and Clavin (see Clavin 1985 for a list of references), have contributed
to this research. A scholarly review appears in Clavin (1985). Landau and Darrieus treated the
one-dimensional flame as a thin discontinuity across which a density jump occurs. The dominant
parameter that affects the stability is the disturbance wavelength in a direction normal to the
direction of propagation. The investigations were conducted to find if such a lateral disturbance
of wavelength w (or wave number k) was amplified by the flow field, and the result was that
the flame is unstable to all wave numbers. This result was puzzling for a long time because
stable laminar flames could be set up in laboratories. Only recently have effects of nonnormal
diffusion, curvature, and buoyancy on the flame stability been shown to reflect realistic features
of stability. Studies by Sivashinsky, Matkowsky, and others included the effects of nonnormal
diffusion (thermal and mass diffusion being unequal), first with low heat release and then with
significant heat release. The analyses of Pelce and Clavin (1982), Matalon and Matkowsky
(1982), and Frankel and Sivashinsky (1982) consider the limit of wave number tending to zero.
The nondimensionalizations used are different in these analyses, and the analysis of Pelce and
Clavin is more general. One of the objectives of the three analyses conducted independently was
to demonstrate the weak influence of viscosity in relation to conductivity and diffusivity. These
studies obtain the dispersion relation (a result of the stability analysis giving the relationship
between the growth rate and wave number) as w = a(q)k — b(q, Le)kQ, where w is the growth
factor, k& the wave number, and a and b are coefficients depending on the temperature ratio
T,4/To and Le = Dpep/k, the ratio of mass to thermal diffusivities. The expressions for a
and b obtained by Matalon and Matkowsky (1982) as well as Frankel and Sivashinsky (1982) do
not match (after appropriate transformations) even for a critical wave number. The numerical
differences are not large in the range of parameters of interest, and the values predicted for
a critical wave number are the same for Le = 1. Results based on systematic analysis and
numerical integration of disturbance equations have been made by Jackson and Kapila (1984).
Their numerical calculations have spanned the complete range of wave numbers, and they confirm
the earlier results in the appropriate limits. They deduce from such analysis the influence
of exothermicity and buoyancy on flame stability (Jackson and Kapila 1986). Increase i
exothermicity is shown to destabilize the flame, and buoyancy is shown to stabilize the flame.

All these studies are analytical in nature and have treated the high activation energy limit.
In these studies the steady-state profiles for temperature, velocity, and mass fractions are
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exponential in character and the reaction zone asymptotes to a plane. A typical plot from
the calculations of Jackson and Kapila (1984) is shown in figure 1 for the largest parameter of
exothermicity of Jackson and Kapila and without buoyancy. The parameter of exothermicity

corresponds to a flame temperature six times the cold reactant temperature. The abscissa in

figure lis | = (% - 1)9. In this figure, m and & are proportional to the activation energy, and £

for the finite-rate chemistry models is discussed later. The results obtained are for £/ RT',q — oo
and for Lewis number not far from unity. It can be seen that at { = 0, corresponding to Le = 1|
the unstable wave numbers are restricted to less than 0.36. And as Le increases, the range of
unstable wave numbers increases. Values of Lewis numbers of some species go up to 2 in the case
of Hy-air systems. For Le = 2.0 and £//RT, § = 4 for the Hy-air system, one obtains { = —2 and
kepit = 0.6. Thus the unstable wave number is increased substantially. At Le = 1, the unstable
wavelengths are larger than 18 (= 27/k ;) times the flame thickness. The flame thickness is
defined in these studies by & = I{r/Cerprur, where #y is the reference conductivity, ¢p r is the
specific heat, p, is the reference density, and u, is the reference flame speed. For cold reference
conditions, this gives

0.052 W/m-K
(1390 J /kg-K x 0.85 kg/m3 x 1.8 m/s)

o A

~ 0.0000244 m (0.0244 mm)

For hot reference conditions, conductivity is almost 3.7 times the cold value and specific heat is
25 percent higher. The product of density and flame speed is constant for the respective cold
and hot values, and é; &~z 0.072 mm. Therefore, the lateral wavelength causing instability is 186,
about 1.3 mm. In the above results, the principal controlling factor is hydrodynamics. The role
of diffusion seems significant only for Lewis number significantly different from unity.

As stated earlier, in all the above analyses, the activation energy is treated as large. The
overall activation energy has been estimated by Fenn and Calcote (1957) to be 16 kcal/g-mole for
the Ho-air system and 28 to 30 kcal /g-mole for many stoichiometric hy drocarbon air systems. At
typical flame temperatures of 2300 K, the activation parameter # = F'/RT,q ~ 3.50 for Hy-air
and 6.1 to 6.5 for hydrocarbon-air mixtures. Arguments concerning the validity of asymptotic
analysis are made after estimating that 6 is between 10 to 20 (Clavin 1985). As noted previously,
the perceived values of overall activation energy for equivalent single-step reaction are much
smaller. Although this departure may still permit the valdity of asymptotic analysis, there needs
to be a demonstration of these aspects. Also, one may find that departures are small with regard
to a few aspects, whereas for others, depending on the controlling phenomena, they are not.

Present Work

In the present work, the linear stability of flames is investigated numerically with particular
reference to a stoichiometric Ho-air system by using a single-step finite reaction model. Two
classes of reaction models, called “model A” and “model B,” are treated. Both are finite
distributed reaction models. Model A 1s chosen because exact analytical solutions may be
obtained of the steady state (or mean flow as it is called in stability analyses) and is primarily
used to evaluate the effects of activation energy. Model B is in the line of classical single-step
reaction models where numerical solutions are needed even for steady state. In this model the
effects of variable thermodynamic and transport properties as well as the effects of diffusion are
explored in detail. In the single-step reaction, there are four species, namely fuel (¢ = 1), oxidizer
(i = 2), product (¢ = 3), and inert (¢ = 4). If the diffusion is modeled after the trace diffusion
approximation (see Spalding 1957a and 1957b for details), one has four Lewis numbers, Le;, i = 1
to 4, defined by Le; = pDjcp /K, where D; is the trace diffusion coefficient. Instead of letting Le;
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vary through the field (something which is easily possible), different diffusion models are chosen
to bring out the effects of diffusion explicitly. The first of these takes all the Lewis numbers to be
equal to unity. This forms the reference case explored by the other investigators in asymptotic
analysis. The second model takes all the Lewis numbers to be equal to 2.0. This value is chosen
to represent the Lewis number of the hydrogen fuel in the environment of the other species. The
third model takes Leq = 2 and Le; = 1, ¢ = 2, 3, 4. It is denoted by Le; = 2111. This is chosen
because in a typical hydrogen-air flame, the Lewis numbers for species other than hydrogen are
near unity. In addition, the sensitivity of the results to the accuracy of the steady-state profiles
is explored.

Basic Equations

The two-dimensional problem is set into an z-y Cartesian coordinate system, with the steady
flame uniform in y and varying along «. A simple step reaction

(Fuel 4+ Oxidizer 4 Inert) — (Product + Inert)

is assumed. The conservation equations are as follows:
Continuity: 5 5 5
U v
e (1)
ot Jx Oy

r-momentum:

p Ou Ju Ju dp 4820 9%u 1 9%
oz Jy _8x+ﬂ

o TP g T 5y T 3022 T 52 T 30z oy

y-momentum:

p dv dv Jv dp (4 9% 8%v 1 8% )
I

o e T ey T Tayt M\ 3ez Y a2 T 30s oy (3)
Energy:
p Ohg Ohs dhs O ( 8T> ; ( 8T> o o
2 2 = — — — - E h; + hY) W 4
ot +pu Jdx tp dy dr Kax +3y H@y i—l(l+ Z)wl (4)

Species conservation:

’)aYieru%erv%:i(D al/i)Jri(D aYi)Jrc&’-” (i=1,2,3) ()

ot Ox Oy Ox P 9z Oy ip % t
pr_p
M R (6)

where c'u'i” is the reaction rate of ¢th species. The primes denote the character of volumetric

reaction rate. It 1s to be noted that for the single-step reaction,
I -1
e S I (7)
1 s s+ 1
where s is the stoichiometric ratio and D; represents the diffusion coeflicients chosen in the
present study to give the Lewis number of the ¢th species a desired value. The mass fraction of
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the inert species (¢ = 4) is obtained from the identity that the four mass fractions must sum to
unity. The equation of state assumes that pressure p is constant and is a good approximation
for the stability study as well (Matalon and Matkowsky 1982). The momentum equations ignore
the variation of viscosity in the field. This is assumed by noting the already demonstrated weak
effects. (See Clavin 1985.) On the other hand, the variation of conductivity is accounted for
because it 18 known to influence the stability characteristics significantly. The equations are
nondimensionalized as follows:

x _ Y i tur 7 )
—_=r — =y _—
by b g3
T

Pr T?“ Uy
. ) (8)
ur Ry Hr
Dip

=1
(Dp)r i /

The subscript r refers generally to cold upstream conditions, and é¢ is the flame thickness chosen
as 0f = #y/(prupcpy). This implies that the Reynolds number based on the flame thickness is

Re = pTUT(Sf = fr = L
tr Hrcpr Pr

(9)

Thus this choice of & implies that the product of Reynolds number and Prandtl number of

the flame 1s unity. Another nondimensional number which appears in the equations 13 Schmdt
number

Sc= fr

(Dp)r

which is set to unity to obtain (Dp).

Dropping the bars over the symbols gives the following nondimensionalized equations:

dp 3pu 8pv
=L =0 10
o (10)
p Ou Ju 4020 92w 1 9%
po ae - P 11
ac T af”"’ (35@ A R (1)
p Ov v 21} 1 0% p 19
o Y ax”“a 2 3z oy) " (12)
p Ohs Ohs  Ohs O ( AT\ 8 ( AT\ ~~hithy &
ot tou dx T dy  Ox ®or +8y " Oy = cpr Ty prurwZ (13)
1=
p OY; i O _ 0 ( 8Y> d ( 8Yi> o . .
—— [ D. D — — L . =1.2.3 14
e T T T ey T e\ ) Tay P gy ) T (EhRa 0
pT: MS (15)

These are the basic equations we need to solve.
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Steady-State Equations
Model A

As discussed earlier, the one-dimensional model utilizes a formalism for which exact analytical

solutions are available. The steady-state energy equation for model A is written as follows:

@ odr o had” (16)
de?  dv Prur(Tad — 1)

where 7 = (1'—1)/(T,q — 1) and h is the nondimensional heat of combustion.

The thermodynamic and transport properties are taken as constant and the Lewis number 1s
taken as unity. The species conservation equation is eliminated by adding to it the energy
equation and obtaining the result of constant enthalpy through the flame. The continuity
equation reduces to (pu)s = 1, and the momentum equation reduces to p = Constant after
ignoring viscous and inertial terms. The choice of the reaction term is discussed in the section
on solutions.

Model B
For model B the same approximations as for model A are utilized, and the energy equation

is written similarly. The reaction equation and the rate expressions are

2H9 + O9 = 2H9 0 (17)

M 32 — by 2 — Ly

w' = Arp°Yf, Yo, exp(RT> _AbpYHQOeXp<RT> (18)
The choice of the forward rate constants is discussed later. The backward rate constants are
chosen to be consistent with the equilibrium constant for the reaction of equation (17). The
resulting one-dimensional equations are solved by a code specifically developed for the purpose
(Goyal et al. 1988).
Stability Equations

For stability analysis, the independent variables chosen are z = pu, v, p, 1), and ¥;. The
various quantities are expanded around steady state, denoted by the subscript s, as

pla,y, 1) = ps(x) + pr(x) oy, 1))
z=zs(x) + zp(2)o(y 1)
u=us(x) +up(x)e(y,t)
v=0+ve(2)o(y,1) (19)
p=ps(x)+ pr(x)p(y,1)

T = Ts(x) + Tr(x)o(y, t)

Y =Yg i(x) + Ve i(2)d(y, ) )

In equation (19), zs(x) = pus(x) = 1 because at steady state the equation of state gives constant
mass flow through the flame. The disturbance function ¢ is chosen as

¢ = exp(—iwt + tky) (i: \/—_1) (20)

Note that tw = wr 4 tw; and the sign of wr determines the stability of the flame.



The stability equations for z-momentum containing uy and us must be expressed in terms of
other quantities. Manipulations of the equation of state and the expression for z give

TS Tf
uf = ., —zf+ —— M, (21)
Ts
Ug = —
s iR
and
Mg
=Ty (22)
5

where Mg 1s the molecular weight variation at steady state. Perturbations of molecular weight
are ignored in the analysis.

Model A

For model A, the following equations for z¢, pg, vg, and T} are obtained after the substi-
tution of the expansions into equations (10) through (14) and the subsidiary relationships in
equations (21) and (22) are used:

- zk% - —m% (23)

ph— Tl + (Ts - 2T5’) ot (kQTs + T - Tg) sp 4 J(Ts)Th = iwey (24)
vll"l_vf k vf—lkpf_z% (25)

N T R R (20

The primes denote derivatives with respect to x. This set of equations constitutes a seventh-
order system. These are solved under conditions of zero values as ¢ — Zoo for all the
variables zp, pp, vp, and Tp. Since the number of boundary conditions is eight, the problem
is overdetermined and has nontrivial solutions for specific values of wave number k. Thus the
problem becomes one of eigenvalue.

Model B

For model B, the following perturbation equations for z, v, p, and T are obtained when
equations (19) and (20) are used in equations (10) through (14) and the subsidiary relationships
in equations (21) are also used:

Te M
/ . . fis
zp — k= = —iw 27
u! & M
plf— pr| L — ]CQUf+ i—v% + ung + ulf = iw—SUf (28)
3 3 Ty
" 3 3 ul ko, kML 3 3 MS
o = ot - 34 ”f“k_zf“k_zﬁuzvf T~ 4M2Tf TP T e, (29



2 drs 9 L hi+hY s
¢! Py i1 — |+ =) ——L |7
* ( Ks * ks dT 7 f 2 cprly PTUTJZ’T f
1=
T hi‘l‘h? ns 6 o M e
- — J; Y e— =Tz — =227 30
ks =1 cprily Z%P?“Ur AV s f Ts ks f (30)
a N T Wt Wy \ T 2
1 / 1 d(Dlp) / / -MS 1
——Y. =z Yi Tp = —i———uwY; 31
Dips ©* f(DiP)s dTs 1s T (Dip)s uf (1)
where J
¢
et 4
tp = cp,s + Ts—= i (32)
0" ou
hJ—ag JiT = 57 (33)

It is possible to relate the Jacobians J; j and J; 7 by invoking the stoichiometric relations
between the reaction rates (eq. (7)) to obtain

SJl,j:JQ,j _(S+1)J1,_]:J3,_] SJl,T:JQ,T _(S+1)J1,T: J3,T (34)

In treating the variation of properties, it is assumed that all the dependence of the thermo-
dynamic and transport properties in the flow field i1s described in terms of temperature alone.
This 1s not entirely correct since there is some dependence of mass fractions of various species as
well. But for premixed mixtures, it is reasonably accurate, certainly at a Lewis number of unity,
where all the properties are described in terms of one progress variable, namely temperature.
For nonunity Lewis numbers, the approximation implies that the extra dependence on mass
fractions i1s ignored. The equation for pressure is in terms of us and its derivatives. They can be
expressed in terms of z; and 7} by using relationships in equations (21) to obtain an equation
for pr given by

!

2 2
Pr " 1! " 4, /(Mé) MY (M)

— — |dugze + 8uze + dugz, + —I, — 871,
Py 5| MUs A 5% ST ALt f

—4 5T+8
MS

1%

5
1 T T
— 3k2u5zf— 3k2M —|—z/cfuf + 2, zf+uszf+ MTf —£ ]\45 = iwzp+ iw=t (35)

s Ms s

The primes on various quantities represent derivatives with respect to #. The perturbation
equations require us, derivatives us (up to the second order), first derivatives of Ts and Y}, and
Jacobians of reaction rate with respect to T and V.

The order of the equations can be reduced further. One should normally solve three species
conservation equations. However, the perturbation on the summation of mass fractions leads to

Yig+Yor+Ysp=0 (36)

7



Hence it is sufficient to solve only two of the species conservation equations. The energy and
species equations must be recast with the relationships given in equation (7) to get

—6 2 dlﬁls 6
" po 2 drs N (2 L, T
f+<K5+KSdT )f +f<5 Ctpr Ji17 ) 1¥

N

Rs pru

M,
[(J1 1= N13)Y1 ¢+ (J12— /1 3)Y2f] - —T sS4 = —Z——wT (37)

s Ks

1 ) 5
Y”+[—k2+ L -7 ]y S S ey S R
Lf (Dlp)sprur( 11—-J13)| Yif GI) prw( 12— J13)Y2¢
Ly Ly L L dD1p) iy
— S o Vst ity + TlY,
(D1p)s W7 Dips YT (D1p)s pruy” VT (Dyp)sdl, L
1 d(Dlp) ;Mg 1
AT, —i WY 38
Dyps dTy 0= 7" T (Dyp)s L (38)
1 & 1 5
A t (J . —J _ £ (Tt — Joa\V
2.t (D1p)s ,ONLT( 2,1 2 3) 2f (Dyp)s P?“Ur( 2,1 2,3) 1,f
1 1 18 1 dD
! / i Te + ( QP)T !

— Y — Yo 2p + —J —
(Dap)s 28 " (Dap)s 2387 (Dapys praw V1T T (Dgp)s  dTy 57 Lf

L d(Dyp) I——iMS !
Dops dT' 2,51 —

— Y- 39
Ts (DQP)S 2.f ( )

In obtaining these equations, the following equalities obtained from equations (34) have been
used:

Jo9—J93=s(J12—J13) Jo1—Ja3=s(J11—J13) (40)

hi+ h§+s (ho+ hg) — (1+ s) (h3+hg)

het = 41
ct Cp,rTr ( )

If the choice of Lewis numbers is such that Leg = Leg, then the two species equations can be
related by sYy ¢ = —(s + 1)Y3 ;. This equation can be used to reduce the number of species
equations to one and to modify the energy equation. Such a modification gives

11 —C dﬁs / 92 1 (S

Ks Ks Priy
MS Ep
_ 1 Yig— T = —i——wTj 42
e L Jo¥ sit =~ Wl (42)
1 & 1 dDyp 1
Y1’ + (—k2+ ) + [ L ] TiY] = ——Y] =
Lf Dips prur LT (D) D1p)s T N D
1 & 1 dDyp , . Ms 1
J1 7T + ——— T = —W— 43
Birs o M By T = e ()
where

Jo=Ji1+st12—(1+s)J13 (44)



In this case the order of the equation to be solved is 9. If Le; = 1, one can eliminate the equation
for Y1 by combining it with the energy equation. The perturbation equation for enthalpy has

zero for the solution. For this case, (D1p)s = I;—S and the temperature gradient terms associated

with the transport properties are ignored. In this case the energy equation becomes

1 a1, M, ¢
T - pr T (k2 4+ — (T — het Ty 1) —C——Szf_—z—s—wa (45)

Ks pruy ? dx TS Ks

Steady-State Solutions
Model A

Because equation (16) does not have the space coordinate explicitly, it is possible to reduce
the order of the equation by defining ¢ = Eil_; (Spalding 1957a and 1957b). One can then recast

the equation as
dq -1

where A represents the constants on the right-hand side of equation (46). Equation (46) has
been analyzed in combustion literature. The reaction rate expression starts from exponentially
small values near 7 = 0, peaks at some value of 7 depending on the activation energy, and
goes to 0 at 7 = 1. Similarly, ¢ is 0 both at 7 = 0 and 1 and is positive definite over the
range 7 = 0 to 1 for the adiabatic case considered here. Based on these observations one can
show that, for a class of {Droﬁles g = 7 — 7™, where m is a parameter, one obtains A = 1
and """ = ms™ Reversing this argun]ent one can say that for this reaction rate
expression (With m as a parameter), the solution for ¢ is as stated earlier. One can integrate the

equation for ¢ and set out the steady-state solution as

1
s = 1l +exp[—(m— 1Dz +¢ mT (47)
Ts = 75(Tyq — 1)+ 1 (48)
Us = T5 (49)
dT dr.

d_; = (Tad — 1)d_:§ =(Taa — 1) (TS - Tgl) (50)
M= mm (1 o 1) (51)

oo 1
J = 5T = (Thq — 1)m27'§n 1 [1 (2— %) Tm_l] (52)

In these equations, the steady-state result that (pu)s = 1 along with the equation of state is
used to obtain equation (49). In equation (47), ¢ is chosen so that 7 = 0.5 at # = 0; this gives

¢ =log2m 1 1) (53)

These solutions are coded and used in the solution of the stability equations. The choice of ¢
has no effect except on the resolution of the eigen solutions. With the stability code using a
grid distribution which allows a finer resolution at the center (# = 0) and increasingly coarse
grid at # removed from this point, one expects better resolution by arranging the steady-state
solution in this manner. The stability code utilizes its own grid distribution and computes the
various quantities with the analytical expressions noted above. The parameter m characterizes
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essentially the activation energy; that is, m = Constant(£/RT, ). Typically values of m =~ 4
to 6 imply high activation energy and m a2 1.3 implies activation energies close to 16 kcal /mole
of a range expected for a Hy-air system. This fact is based on the result that the reaction rate
distribution (eq. (51)) has a peak at 75 close to 0.5, a feature seen later even with a reaction
rate distribution with 7 in the case of full chemistry.

Model B

The numerical solutions for the assumed reaction rate for the Ho-air system are obtained from
an unsteady code developed for the purpose (Goyal et al. 1988). The code also generates the
Jacobians of reaction rate with respect to temperature and mass fractions of species to be used in
the stability code. These steady-state results are used m the stability calculations for nonunity
Lewis number cases. The steady problem uses a uniform grid in z = [ p dz. The grid is then
transformed to the coordinate # = [dz/p. Then, the results of temperature, mass fractions,
and Jacobians are interpolated with a cubic spline interpolation program into the grid required
by the stability code. The temperature data then are spectrally differentiated by a Chebyshev
polynomial fit to obtain the first and the second derivatives. These profiles were found to be
jageged and nonsmooth. Consequently, it was decided to curve fit those data which needed to
be differentiated. A Pade polynommal fit was used to describe the temperature distribution with
z, and molecular weight, specific heat, conductivities, and diffusivities with temperature. These
were then used in the stability code.

Stability Solutions—Numerical Aspects

The stability code used here was originally written for analyzing the stability of high-speed
flows (Macaraeg, Streett, and Hussaini 1988). The perturbation equations are discretized by
a spectral collocation technique using Chebyshev polynomals as basis functions. The code
utilizes a staggered mesh to treat pressure. The resulting discretized equations are written in a
generalized matrix eigenvalue problem and are solved with the standard library routine. (See
Macaraeg, Streett, and Hussaini 1988.)

Model A

For model A, all the steady-state quantities were known in analytical form, and the
calculations of the stability could be performed in a straightforward manner. The code utihized
a grid stretching with the finest portion of the grids at « = 0. The region covered is from
—o0 to oo. It was therefore necessary to set a value for infimty. Several initial experiments
suggested that infinity could be set at @ = +15. Sometimes, the eigenfunction could not be
resolved accurately, since the decay was slow; for this reason, infinity was set at —20to +20. (It
must be remembered that this = is already nondimensionalized by é¢.) Grid resolution studies
were conducted and these showed that the results did not differ by more than 0.1 percent when
the number of grid points exceeded 121. Most calculations utilized at least 121 grid points. An
interesting aspect of the eigenfunction distribution was that pressure perturbations decayed the
slowest toward the boundaries. Initial concerns regarding the effect on accuracy were resolved
when 1t was determined that enhancing the boundaries and increasing the grid resolution did
not affect the critical neutral wave number but altered the eigenfunctions marginally.

Model B

For model B, the range of infinity and the grid resolution used for model A were found to be
valid. In the numerical results of steady flames, it wasnecessary to define a value of é;. Although
it would be possible to estimate the value from é; = kr/prurcpr, 1t was found convenient to
assign a value to dé¢, and with this value, obtain a consistent set of reference values. It should
be remembered that the critical wave number, a result from the stability code, 1s actually a
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nondimensional quantity, the nondimensionalizing parameter being ¢;. One would expect the
physical results obtained to be independent of the choice of é¢. This was ensured by varying the
value of 6 and obtaining the critical wavelength for each case.

Results and Discussion

Model A

Figure 2 shows the steady-state profile oftemperature, the first gradient, the second gradient,
and the Jacobian. Most of the region of large change is restricted to a region —6 < z < +6.
The Jacobian varies significantly over the field, and the variation is different for the activation
energy parameter m = 9 and 2. The variation is larger for m = 9 and smaller for m = 2.
The calculations lead to a set of critical wave numbers (zero growth rate w; = 0) for m, the
activation energy parameter, as shown in table 1. The peaks of the eigenfunctions are shown in
table 1(b) for the unperturbed (U) and the perturbed (P) cases, which are discussed later. It
can be seen from the table that the critical wave number varies from 0.36 at high m to about
0.40 at m = 1.3 corresponding to £ & 16 kcal/mole. This constitutes a 10-percent change which
is not considered significant. The eigenfunctions are consistent with results from the asymptotic
analysis. The imaginary part of zp, real part of vp, and mmaginary parts of 1y and pp are zero.
The other nonzero eigenfunctions are normalized by the peak of py.

In studies of stability with strong convection such as mixing or boundary layers, it was
found that the mean profile exerts a significant influence on the stability characteristics. In
order to determine the validity of this statement in the present context and to determine the
features which affect stability significantly, subsidiary calculations were performed as fol310vvs.

T X

The initial profile of T%(z) and 7% (x) was perturbed by a function 4z (zs — 2)/22, sin 5

Loo
chosen arbitrarily so that there would be fluctuations in the profile with zero at the boundaries
z = 0 and ¢ = zoo. Figure 3 shows the plots of steady profiles. As can be seen, profiles

for both d7T/dx and dZT/dasQ have considerable fluctuations. Table 1 shows k_.;; and peak
amplitudes of eigenfunctions for m = 9 and 2. The wave number k..t 1s altered by no more
than 3 percent, and the eigenfunctions are altered somewhat more but less than 10 percent.
There are considerable fluctuations in the resulting eigenfunctions, largely those for pressure.
These fluctuations do not seem to affect the overall result on stability. Thus the errors in
temperature profile gradients seem to make little difference to the results of stability. The
reason for this is that the instability is largely driven by hydrodynamics and details of the
profile do not matter significantly. Figure 4 shows the eigenfunctions for both low and high
activation energies, both perturbed and unperturbed cases. First, consider the unperturbed
case. The structure of the eigenfunctions shows that their width is also from —6 to 6. It is only
the eigenfunction for pressure that seems to decay slowly. For the lower activation energy, the
temperature eigenfunction peak is larger than the pressure eigenfunction. This feature of the
temperature eigenfunction having a peak higher than the pressure eigenfunction is seen in all
the later calculations for model B. Between these unperturbed and perturbed cases the effect
of disturbance is less severe for m = 9 than for m = 2. Calculations were made by changing
the Jacobian by 5 percent from the nominal value. This results in a substantial change in the
critical wave number of 20 percent. The features concerning the eigenfunctions look very similar
and seem altered quantitatively to a small extent. Thus the stability is very sensitive to the
Jacobians but quite insensitive to the details of temperature profile gradients.

The effects of Prandt] number have been discussed by earlier investigators (Clavin 1985) and
were deduced to be insignificant. The results of the dependence of the critical wave number
on Prandtl number are presented in table 2. The changes of k.. near Pr = 1 are marginal.
Only in the extreme case of Pr = 0.05 does the change of k. from that of Pr = 1 look
substantial. A study that considered Pr — 0 was conducted to deterrmne if the viscous terms
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could be neglected altogether. Two calculations were made by dropping the viscous terms in
the momentum equations for u and v separately. Neglecting the viscous terms in the equation
for u for m = 2 leads to a 10-percent reduction of k. it from 0.391 to 0.356. Neglecting viscous
terms in the equation for v does not lead to an acceptable solution satisfying the boundary
conditions. This situation is inferred to be related to the neglect of the highest order derivatives
in v (v" term), which is a typical singular perturbation problem. This is why the approach of
obtaining the limiting solution of letting Pr — 0 by retaining all the derivatives seems to lead
to a physically consistent result.

Model B

Numerical calculations for a steady flame were performed for the stoichiometric Ho-air system
with a single step reaction scheme, 2H9 + O9 = H9O, with frequency factor Af of 1.1 x 1019,
and an activation energy F of 16 kcal/mole. The choice of the parameters was based on the
calculations of the stoichiometric flame structure with full chemistry (Bhashym et al. 1986).
Figure 5 shows the plot of reaction rate of hydrogen with nondimensional temperature from
such a calculation. The peak in the reaction rate occurs at 7' &~ 4.2, whereas the adiabatic
temperature corresponds to 1" = 8.156. For Le = 1, the reaction rate expression becomes a
function depending on temperature alone. Now, one can estimate E (or 6) from the plot of
reaction rate with temperature. Such a calculation yields F s 16 kcal/mole. Such estimates are
also available from earlier work (Fenn and Calcote 1953).

The steady flame speeds obtained from the steady-state calculations are 1.63 (Le; = 1), 1.83
(Le; = 2), and 1.70 m/s (Le; = 2111). The case Le; = 2111 implies that the Lewis numbers
for the four species 1, 2, 3, and 4 are 2, 1, 1, and 1. The results of the steady profiles and
the eigenfunctions for the nominal case are shown in figure 6. The critical wave numbers for
chosen values of 6 are shown in table 3. As can be seen, the critical unstable wavelength is
about 0.9 mm for the classical constant property case. For large activation energy, the critical
wavelength would be about 1.05 mm (not shown in the tables).

The calculations with variable properties show results which are interesting. Variable
properties seem to act as a stabilizing influence, raising the unstable wavelength to as large
as 1.88 mm. The property variation that has caused the change is deduced from the next two
results. Variable specific heat alone seems to slightly destabilize the flame. But conductivity
and diffusivity variation coupled through the Le; = 1 assumption is the most stabilizing feature.
It enhances the stability by a factor of 3. Clavin (1985) invoked the work of Clavin and Garcia
(1983) and has indicated that the variable property effects can be taken into account by the use
of thermal diffusivity at the hot condition rather than the unburnt condition. This effectively
amounts to taking oy about 2 to 2.5 times higher than that estimated from the use of properties
at unburnt condition. This effect then leads to enhanced stability. The results obtained in the
current work are in conformity with the results of Clavin. The details can be understood by
examining the results set out in figures 7 and 8. As can be seen from these figures, there are
only weak differences in the profiles of the eigenfunctions, though the critical value of the wave
number is significantly different between the constant and variable property case.

Results of the kind described for model reaction were again established in the present case:
(1) an increase of d7/dx by 1.5 changes the predicted critical wavelength by 2 percent, (2) a
change in d%7/dz? affects the results even less than a change in d7'/dx, and (3) an increase
of the Jacobian profile by 10 percent causes an increase in critical wave number of 25 percent
(these results are not presented here).

Once the range of infinity —15 to 15 and the scheme for interpolation were established, the
approach to curve fit the steady-state quantities was abandoned i favor of numerically differ-
entiating the temperature profile and using other interpolated quantities directly. Calculations
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for constant properties turned out to be straightforward and gave the results within 1 percent
of those from the curve fit noted above. The results for these calculations are presented in fig-
ure 8. The second gradient alone seems to have fluctuations; but this does not seem to affect the
eigenfunctions at all. The calculations for variable specific heat turned out to be more difficult
to perform and needed better resolution. This was accomplished with 151 grid points. (The
CPU times for the calculations of the eigen spectrum and the eigenfunctions on a CRAY-2 super
computer were T1 s for 121 grid points and 120 s for 151 grid points for one case).

Calculations have been made for two cases of nonunity Lewis number. In the first case, the
Lewis number of all the species was 2. This corresponds to the conventional approach m which
all Lewis numbers are equal. In the second case, the Lewis number of fuel alone is taken as 2.0
and the Lewis numbers of the other species were set to unity. This follows from the calculations
of Ho-air either with full chemistry or single step chemistry with variable properties (see, for
instance, Bhashyam et al. 1986) which show that Le; for Hy is about 2 to 2.5, Le; for others
is between 0.8 to 1.0. The steady-state profiles of Y; ¢ versus 1" and the Jacobians are shown
in figure 9. The profile shapes for Le; = 2 show siéniﬁcant deviations from a linear profile.
This is expected from simple analyses of the variation of nondimensional temperature with fuel
mass fraction near a cold boundary (Spalding 1957a and 1957b). The profiles for Le; = 2111
(Lewis number of various species in order of Hg, O9, H9O, N9), however, do not differ much
from results with Le = 1. The differences in the results between Le; = 2111 and Le = 1 are
caused by the diffusion terms. The stability results are summarized i table 4. The critical
wavelength is typically 1.6 to 1.8 mm for the nonunity Lewis number cases. These values are
only slightly smaller than for Le = 1. These observed features are a consequence of the fact that
hydrodynamics controls stability and details of flame structure are less relevant to stability.

FFigure 10 shows the plots of the real and imaginary parts of the eigenvalues as a function of
wave number k. It may be noted that wy is less than 0 for the stable range shown in the figure.
In all the cases except Le; = 2 (with variable properties), the imaginary part (w;) is zero in
the unstable range. The imaginary part being zero implies that the solution gets amplified in a
nonoscillatory manner. The growth of the disturbance in time for any given unstable wavelength
can be estimated from the results of figure 10. The time for doubling disturbance amplitude can
be obtained from the disturbance equation (eq. (16)) as

0.693 o
=1L 54
2.5 = S (54)
The time for doubling the amplitude scales like the characteristic time for the flame, with the
coefficient typically being about 5 to 20. These values are relevant when making a full nonlinear
simulation with a disturbance.

Summary of Results

The problem of the stability of laminar flames, particularly the Hg-air system has been
studied. The effects of finite-rate kinetics and variable thermodynamic and transport properties
are explored. The perturbation equations are spectrally discretized and numerically solved
to obtain the eigenvalues and the corresponding eigenfunctions. These calculations show the
following results:

1. The effect of finite activation energy on the critical wavelength is not significant. Reduction
of the activation energy to values corresponding to the Hg-air system reduces the critical
wavelength by about 10 percent.

2. Variable transport properties enhance the stability and enhance the critical wavelength by
a factor of 2 to 2.5.
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3. Results for realistic parameters show that the critical unstable wavelength for a stoichio-
metric Ho-air mixture is about 1.6-1.8 mm.

NASA Langley Research Center
Hampton, VA 23665-5225
November 19, 1991
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(a) Critical wave number kit

Table 1. Model A

(b) Peak amplitudes of eigenfunctions

kerit for—
Unperturbed Perturbed
m case case
9 0.362 0.3704
4 0.375 0.382
2 0.391 0.407
1.3 0.401 0.411

m Case Re(z) Im(v) Re(T) Re(p)
9 Unperturbed 2.9 175 74.0 210.0
9 Perturbed 3.3 19.2 79.1 225.6
2 Unperturbed 8.2 28.1 78.3 58.3
2 Perturbed 9.1 293 79.7 62.5

Table 2. Model B

k crit, for m of—
Pr 9 2
1.0 0.391 0.362
0.7 0.377 0.374
0.1 0.305 0.331
0.05 0.300 0.301

Table 3. Model B for Le; = 1 and ¢ = 35

(a) Critical wave number k., and &

(b) Peak amplitudes of eigenfunctions

5, Wavelength, Case Re(z) [Im(v) |Re(T) |Re(p)
Case ket | mm | 276¢ [k i, mm Constant properties | 10.0 | 26.0 83.8 64.5
Constant properties [ 0.42 | 0.06 0.9 Variable properties 8.0 25.0 74.4 66.5
Variable properties | 0.20 | 0.06 1.88
Variable ¢, 0.43 10.06 0.88
Variable x and Dp 0.18 | 0.06 2.09
Table 4. Model B for Le; = 2 and 2111
(a) Critical wave number ki and 65 (b) Peak amplitudes of eigenfunctions
¢, Wavelength, Case Le; |Re(z) |lm(v) [Re(1) |Re(p)
Case Le; |keoy [mm |276¢/k 5, mm Constant properties 95 |123.0 [86.4 604
Constant properties 2 10.50 10.06 0.75 Variable properties 6.2 21.0 | 84.4 |64.5
Variable properties 2 10.24 10.06 1.57
Constant properties |2111 10.48 [0.06 0.785
Variable properties [2111 [0.21 |0.06 1.79
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